Click or drag to resize

FunctionMathIntegrateConservativeOde Method (FuncDouble, Double, Double, Double, Double, Double, Double)

Solves a conservative second order ordinary differential equation initial value problem.

Namespace:  Meta.Numerics.Analysis
Assembly:  Meta.Numerics (in Meta.Numerics.dll) Version: 4.0.5.0 (4.0.5.0)
Syntax
public static OdeResult IntegrateConservativeOde(
	Func<double, double, double> rhs,
	double x0,
	double y0,
	double yPrime0,
	double x1
)

Parameters

rhs
Type: SystemFuncDouble, Double, Double
The right hand side function.
x0
Type: SystemDouble
The initial value of the independent variable.
y0
Type: SystemDouble
The initial value of the function variable.
yPrime0
Type: SystemDouble
The initial value of the function derivative.
x1
Type: SystemDouble
The final value of the independent variable.

Return Value

Type: OdeResult
The solution, including the final value of the function and its derivative.
Exceptions
ExceptionCondition
ArgumentNullExceptionThe rhs is null.
NonconvergenceExceptionThe ODE could not be integrated to the required precision before exhausting the maximum allowed number of rhs evaluations.
Remarks

For information on integrating conservative ODEs, see IntegrateConservativeOde(FuncDouble, Double, Double, Double, Double, Double, Double, OdeSettings).

This overload uses default values for precision and evaluation budget. It targets a relative precision of about 10-12 and an absolute precision of about 10-24, with an evaluation budget of about 8000.

See Also