Click or drag to resize
UncertainMath Class
Contains methods for computing basic mathematical functions of uncertain values.
Inheritance Hierarchy
SystemObject
  Meta.NumericsUncertainMath

Namespace:  Meta.Numerics
Assembly:  Meta.Numerics (in Meta.Numerics.dll) Version: 3.1.0.0 (3.1.0.0)
Syntax
public static class UncertainMath

The UncertainMath type exposes the following members.

Methods
  NameDescription
Public methodStatic memberAcos
Computes the arccosine of an uncertain value.
Public methodStatic memberAsin
Computes the arcsine of an uncertain value.
Public methodStatic memberAtan
Computes the arctangent of an uncertain value.
Public methodStatic memberAtan2
Computes the arctangent of the ratio of two uncertain values.
Public methodStatic memberCos
Computes the cosine of an uncertain value.
Public methodStatic memberCosh
Computes the hyperbolic cosine of an uncertain value.
Public methodStatic memberExp
Computes e to the power of an uncertain value.
Public methodStatic memberLog
Computes the natural logarithm of an uncertain value.
Public methodStatic memberPow
Computes an uncertain value raised to an arbitrary power.
Public methodStatic memberSin
Computes the sine of an uncertain value.
Public methodStatic memberSinh
Computes the hyperbolic sine of an uncertain value.
Public methodStatic memberSqrt
Computes the square root of an uncertain value.
Public methodStatic memberTan
Computes the tangent of an uncertain value.
Public methodStatic memberTanh
Computes the hyperbolic tangent of an uncertain value.
Top
Remarks

The methods in this static class perform the same basic mathematical operations as the methods of the Math class, accounting for the uncertainty in the inputs to produce a corresponding uncertainty in the output.

As with operations on uncertain values, the methods assume that the uncertainty in input parameters represents the standard deviation of a distribution of measurements, and produce a value for the uncertainty in the output which represent a corresponding standard deviation, under the assumption that the standard deviations are small relative to the best values.

See Also